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The breakup of immiscible fluid particles in a prototypical turbulent flow has been
investigated. Dispersed fluids of varying density, viscosity and interfacial tension with
water were injected continuously on the centreline in the fully developed region
of a turbulent water jet. Digital image-processing techniques were used to track the
particle size distributions as the initial globules of the dispersed fluid were broken into
smaller particles and convected downstream in the jet. Particle breakup frequencies
were calculated from the evolution of the measured particle size distributions using a
simplified version of the Boltzmann equation. The results of these calculations indicate
that the breakup frequency of fluid particles at low Weber numbers scales with the
passage frequency of the large-scale turbulent features of the flow, approximated
as u′/L, where u′ is the r.m.s. value of turbulent velocity fluctuations and L is the
local integral length scale. High-speed video images corroborate this result. Prior to
breakup, dispersed fluid particles with initial diameters within the inertial subrange
of the background flow stretch to lengths comparable to the local integral scale.
These elongated particles subsequently break owing to capillary effects resulting
from differences in the radius of curvature along their length. The breakup time of
these particles scales with the capillary time td =µdD/σ , where µd is the dispersed
fluid viscosity, D is the undeformed particle diameter, and σ is the interfacial
tension between the dispersed fluid and water. These results are analogous to the
breakup mechanisms observed by several investigators in low-Reynolds-number flows;
however, they contradict the classical theory for turbulent particle breakup, which
suggests that fragmentation results from isolated interactions with turbulent velocity
fluctuations over distances comparable to or smaller than the undeformed dispersed
particle diameter.

1. Introduction
Many natural and engineering processes involve the transfer of heat or chemical

species between two immiscible fluids. Some examples include gas exchange between
the oceans and the atmosphere owing to the entrainment of air by crashing waves
(Melville 1996), the evaporation of fuel sprays in internal combustion engines, the
cooling of industrial exhaust by water sprays, and the delivery of drugs through
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aerosol inhalants. Each of these examples involves the dispersion of immiscible
particles, either droplets or bubbles, in a continuous turbulent flow. In all cases, the
available surface area at the interfaces separating the two immiscible fluids governs
the amount of heat or chemical species exchanged. Therefore, knowledge of the size
distribution of the fluid particles is critical to developing accurate predictive models
of these processes.

Turbulent particle breakup has been the subject of an ongoing investigation,
beginning with the pioneering work of Kolmogorov (1949) and Hinze (1955). Workers
in the chemical engineering field have invested a considerable effort developing
expressions for the equilibrium particle size distribution achieved by turbulent
dispersions in stirred tanks and pipelines (Shinnar 1961; Sleicher 1962; Arai et al.
1977; Konno, Arai & Saito 1977; Calabrese, Chang & Dang 1986a; Calabrese, Wang
& Bryner 1986b; Wang & Calabrese 1986; Berkman & Calabrese 1988; Hesketh,
Etchells & Russell 1991; and others). Other work has focused on the development
of models for particle breakup frequency and daughter particle size distribution that
can be used to predict particle size distributions once the turbulent flow conditions
are known (Coulaloglou & Tavlarides 1977; Konno et al. 1980; Konno, Aoki &
Saito 1983; Prince & Blanch 1990; Tsouris & Tavlarides 1994; Luo & Svendsen 1996
and others). More recently, a computational study of sub-Kolmogorov scale particle
breakup in stochastic flows has been performed (Cristini et al. 2003). A review of
many of these models can be found in Lasheras et al. (2002).

The vast majority of the investigations of turbulent particle breakup performed
over the past half-century have been conducted using turbine agitators, like those
commonly found in the chemical engineering industry, or turbulent pipe flows.
Although these experiments have provided useful information for specific operating
conditions of the given devices, they have failed to produce general insight into
the mechanisms of turbulent breakup. The results from experiments conducted in
agitated vessels or pipes are difficult to interpret because of the complexity of the
flow conditions in each of these devices. In both of these experimental configurations,
the turbulence is highly anisotropic and contains regions of high mean shear, either
near the turbine blades or near the pipe walls. In the current work, a more controlled
and more thoroughly understood turbulent flow was used: an axisymmetric high-
Reynolds-number turbulent free jet. This flow contains no solid boundaries, so
particle interactions with walls or with an intrusive turbulence generating mechanism
(e.g. turbine blades) are eliminated. We will describe the results from a series of
experiments designed to investigate the breakup of immiscible fluid particles in this
canonical turbulent flow. Dispersed fluids of varying density, viscosity and interfacial
tension with water were injected continuously on the centreline in the fully developed
region of a turbulent water jet. Digital image-processing techniques were used to track
the particle size distributions as the initial globules of the dispersed fluid were broken
into smaller particles and convected downstream in the jet. From these measurements,
particle breakup frequencies were determined based on a simplified version of the
Boltzmann equation.

Our measurements indicate that the breakup frequency of particles with non-
negligible density at low Weber number, scales with the passage frequency of the large-
scale turbulent features of the flow in a manner that is qualitatively analogous to the
breakup mechanisms described in Taylor (1934), Rumscheidt & Mason (1961), Grace
(1982), Bentley & Leal (1986b), Stone, Bentley & Leal (1986), Stone & Leal (1989a, b),
and others in laminar flows, and Cristini et al. (2003) in sub-Kolmogorov scale
stochastic flows; however, it is contrary to previous results published for the breakup
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of immiscible fluid particles in turbulent conditions, described in Lasheras et al.
(2002).

This paper is organized as follows. Section 2 contains an outline of the experimental
facility and methods used to collect and analyse the data presented, including the
characterization of the background turbulent flow, a summary of the dispersed fluids
used, and a description and validation of our digital image-processing technique.
Section 3 describes how the particle breakup frequency is determined from the
experimental data based on the population balance equation. It also describes how
we defined the ‘largest size class’, Dmax, used to determine breakup frequencies from
the particle size distributions generated from the raw data and includes the calculated
breakup frequencies for each dispersed fluid using two different definitions of Dmax.
Section 3.1 demonstrates how the calculated breakup times (inverse of the breakup
frequency) scale with the dispersed fluid properties. Section 4 demonstrates how the
breakup frequency scales with the features of the background turbulent flow and
includes a discussion of potential resonant interactions between turbulent velocity
fluctuations in the background flow and the shape oscillations of the dispersed fluid
particles. Section 5 includes images captured with a high-speed video camera that
depict the deformation and fragmentation process. Finally, § 6 relates the present
results to those reported previously and discusses potential reasons for the difference
in the observed particle breakup mechanism.

2. Experimental facility and methods
The experimental facility, shown in figure 1, consisted of a submerged high-

Reynolds-number water jet issuing upward from the bottom of a large acrylic water
tank. The tank was open at the top end, permitting water to flow out of the tank
into a gutter, thereby minimizing recirculation within the tank. The water jet was
produced using a nozzle with a contraction ratio of 250:1 and an exit diameter, Dj ,
of 3.1 mm. A uniform velocity profile at the nozzle exit was obtained by inserting
two perforated plates upstream of the nozzle. In the experiments discussed here,
Rej = U0Dj/νc ∼ O(104), where Rej is the jet Reynolds number, U0 is the exit velocity
of the nozzle, and νc is the kinematic viscosity of water. The jet exit velocities used
were in the range 12 m s−1 <U0 < 17 m s−1.

The axisymmetric free turbulent jet has been studied extensively over the last
fifty years. Reviews of the flow characteristics found in turbulent jets are given in
Hinze (1975), List (1982), Monin & Yaglom (1987), Pope (2000) and others. Detailed
experimental investigations of this flow are given in Wygnanski & Fiedler (1969) and
Hussein, Capp & George (1994), among others. The mean velocities and turbulence
properties of the water jet used in the present experiments were measured in order to
verify that the flow conditions in the facility matched the well-known characteristics
of a free high-Reynolds-number turbulent jet.

Mean values of the axial component of velocity were measured using a laser-
Doppler velocimeter. The jet water supply was seeded with 5 µm hollow glass spheres
that have an extremely short momentum response time compared to the large-scale
turbulent fluctuations existing in the flow. The results of these measurements are
shown in figure 2. Following Hussein et al. (1994), the centreline axial component of
velocity in a self-similar jet is given by:

U0

UC

=
1

Bu

(
X

Dj

− X0

Dj

)
, (2.1)
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Figure 1. Experimental facility.

where Dj is the exit diameter of the nozzle, U0 is the exit velocity, and UC is
the magnitude of the axial velocity component existing at the centreline at a non-
dimensional distance X/Dj downstream in the jet. X0 is the virtual origin of the
jet and Bu is an empirically determined coefficient. The values X0/Dj =3.78 and
Bu = 4.08 were determined from these measurements. These values correspond well
with those found in Hussein et al. (1994) and Wygnanski & Fiedler (1969).

The radial distribution of the axial component of velocity at several downstream
locations was determined in Martı́nez-Bazán (1998) and is shown normalized by the
value at the centreline in figure 3. These results are plotted versus the normalized
radial distance r/x. It is evident from this figure that the velocity profile becomes
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Figure 2. Exit velocity, U0 divided by the centreline value of the axial component of velocity,
UC , measured at successive downstream locations, X/Dj . The x-intercept, X0/Dj =3.78. ×,
experimental (LDA) data. —, equation (2.1).

Figure 3. Radial distribution of the axial component of velocity. Note that the velocity distri-
bution becomes self-similar after approximately 15 nozzle diameters. [From Martı́nez-Bazán
1998.]

self-similar at X/Dj > 15. In the self-similar region, the axial velocity decays to 90%
of its maximum value at r ≈ 0.05x and to 50% of its maximum value at r ≈ 0.1x.

The one-dimensional energy spectrum at the centreline of the jet was obtained using
a 1 mm TSI hot-film probe and an A.A. Labs anemometer. Taylor’s hypothesis was
used to convert the temporal measurements into the spatial domain. The dissipation
rate of turbulent kinetic energy, ε, was obtained by fitting the following power law,
from Hinze (1975), to the region of the spectrum measured at each downstream axial
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Figure 4. Curve-fit for the dissipation rate of turbulent kinetic energy, ε, compared with the
experimentally determined values. Also shown are the corresponding values of the Kolmogorov
length scale, η = (ν3ε−1)1/4 for Rej = 39 000. �, U0 = 17 m s−1; �, 12 m s−1; �, 13 m s−1; – –, fit.

location with E1(k1) ∼ k
−5/3
1 :
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where E1(k1) is the one-dimensional energy spectrum, k1 is the wavenumber
corresponding to the axial direction, kd is the wavenumber corresponding to the
Kolmogorov scale, kd =(ε/ν3)1/4, ν is the kinematic viscosity of water, and α = 0.45
is an empirically determined constant obtained in a high-Reynolds-number turbulent
jet by Gibson (1962). The results of these measurements, shown in Eastwood (2002),
were in excellent agreement with the values of ε determined previously in Martı́nez-
Bazán (1998). The following relation developed in Friehe, Van Atta & Gibson (1971)
was used to express the dissipation rate of turbulent kinetic energy as a function of
downstream distance in the jet:

εDj

U 3
0

=C

(
X

Dj

− X0

Dj

)−4

, (2.3)

where C = 36 is an empirically determined constant. In the present experiments, the
data was best-fit with a virtual origin X0/Dj =5.47. This approximation for ε is
shown in figure 4.

Immiscible fluids of varying viscosity, interfacial tension (with water) and density
were continuously injected through a small hypodermic needle located on the
centreline of the water jet, in the fully developed turbulent region. The dispersed fluid
injector could be positioned at any axial location in the water jet. In the experiments
discussed here, the injector needle was placed at an axial location X/Dj � 25, where
Dj is the diameter of the water nozzle. Multiple needle diameters could be used to vary
the resultant dispersed fluid particle diameter independently of the flow conditions.
In all cases, the injection velocity of the dispersed fluid was chosen to match the
centreline velocity of the water jet at the injection location. The fluids used as the
dispersed phase and their relevant properites are given in table 1. Mass densities
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Density (kgm−3) Viscosity (Pa s) Interfacial tension (N m−1)

Heptane 684 5.00 × 10−4 4.8 × 10−2

Olive oil 881 7.19 × 10−2 2.0 × 10−2

10 cSt silicone oil 936 9.7 × 10−3 3.5 × 10−2

50 cSt silicone oil 970 5.09 × 10−2 3.7 × 10−2

Table 1. Dispersed fluid properties.

were measured using a precision mass balance and a volumetric flask. The interfacial
tension of each liquid with water was measured using a deNouy-ring tensiometer.
The viscosity of each fluid was measured over a range of applied shear rates using
a Brookfield viscometer. All fluids tested were Newtonian over the testable range of
shear rates. The values of each fluid property determined from these measurements
are in close agreement with those found elsewhere in the literature.

Fluid particle sizes were determined using digital image processing. A 500 W
incandescent bulb focused through an aspheric condensing lens followed by a
symmetric lens was used to provide nearly collimated, uniform backlighting. Images
were collected using a Costar CV-M10 digital camera with a shutter speed of 1/80 000 s
and a frame rate of 30 f.p.s. The images were captured using a Scion LG-3 frame
grabber with a resolution of 640(H) × 480(V) pixels and stored on a hard drive.

For each series of experiments, the camera was focused on an area no greater than
1.9 cm × 1.44 cm, centred on the axis of the water jet. The image resolution was always
greater than or equal to 333 pixels cm−1. Four successive downstream camera positions
located 1 cm apart were used for each fluid tested. A schematic representation of the
measurement conditions is shown in figure 5. At least 3600 images were recorded at
each camera location for each test condition. Examples of these images are shown
in figure 6. For analysis, each image was divided into five overlapping interrogation
windows. Each interrogation window was 18.6 mm wide × 4.5 mm high. It must be
emphasized that in all cases, the local width of the water jet was much larger than the
width of the interrogation windows (typically, L1 � 0.3Dwj , where L1 is the width of
the interrogation window and Dwj is the local diameter of the water jet). Furthermore,
the lateral dispersion of the fluid particles being measured was typically much less
than the width of the interrogation window. Therefore, the fluid particles in these
experiments were confined to a very small region of the turbulent jet with flow
conditions corresponding to the centreline. The assumption of local isotropy has been
determined to be valid in this region (Corrsin & Uberoi 1950; Gibson 1962, 1963;
Wygnanski & Fiedler 1969; Antonia, Satyaprakash & Hussein 1980; Hussein et al.
1994) and the correlation for the dissipation rate of turbulent kinetic energy described
above applies.

Fluid particle sizes were obtained by first applying a median filter and then made
binary by applying an edge-detection threshold to each image. After thresholding,
the area of each fluid particle was determined by counting the pixels comprising that
particle. Interior holes, due to the transmission of light through the fluid particles,
were included as part of the particle area. Particles that touched the edges of each
interrogation window were discarded. The perimeter and projected-area diameter
D =

√
4A/π, where A is the projected area, were recorded for each particle counted.

The perimeter to area ratio was also determined. If this ratio differed dramatically
from 4/D, the corresponding image was visually inspected. If a potential focusing or



316 C. D. Eastwood, L. Armi and J. C. Lasheras

Figure 5. Schematic representation of the experimental measurement conditions. Digital
images were captured in 20 overlapping interrogation windows located immediately
downstream of the dispersed fluid injection point. L1 = 18.6 mm, L2 = 47.3 mm, Lw = 4.5 mm.
Typically, L1 � 0.3Dwj .

overlap error was identified, the offending droplet(s) was removed from the data set.
Examples of the binary images corresponding to the raw images in figure 6 are shown
in figure 7. The particle size distributions obtained for each dispersed fluid using this
technique are given in Eastwood (2002).

In order to verify our ability to determine accurately a characteristic dimension for
the dispersed particles at each downstream location, the volume flow rate determined
from the projected area of the dispersed phase at each interrogation region was
compared to the flow rate indicated on the dispersed fluid flow meter (rotameter).
It was assumed that the dispersed fluid particles travel at the local mean centreline
velocity of the water jet. This was confirmed through laser anemometer measurements
for air bubbles in the same facility in Martı́nez-Bazán (1998); however, it was not
confirmed for the current liquid–liquid dispersions. Since the dispersed fluid injection
velocity was always chosen to match the local centreline velocity, and since these
fluids have densities that are of the same order as water, it is reasonable to assume
that they are convected with a mean velocity that matches the local conditions in
the water jet. The volume flow rate determined for each fluid is shown in figure 8.
The horizontal bands shown in the figure represent ±15% of the flow rate indicated
on the dispersed fluid flow meter. The measured volume flow rates for each fluid,
indicated by the points on the plot, fall within ±15% of the flow rate indicated on
the dispersed fluid flow meter.
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Figure 6. Unprocessed images of the breakup of 5 cSt silicone oil injected at X/Dj =25:
(a) camera position 1, (b) camera position 2, (c) camera position 3, (d) camera position 4.
Note that the camera was mounted upside down; therefore, the flow direction in each image
is from top-to-bottom.

3. Determination of particle breakup frequency
The breakup frequency of fluid particles can be determined from the population

balance equation, as described in Lasheras et al. (2002). After integrating over velocity
space and in the absence of evaporation or dissolution, the population balance
equation becomes (Williams 1985):

∂n

∂t
+ ∇x · (v̄ n) = Q̇b + Q̇c, (3.1)

where n= n(D, x, t) is the number density of particles of a given size D at location x
at time t , v̄ is the mean velocity of these particles, and Q̇b and Q̇c are the breakage
and coalescence rates, respectively.

If a dispersed system is sufficiently dilute, the probability of particle–particle
collisions, and therefore coalescence, is small. In this instance, Q̇c is small compared
to the other terms in equation (3.1) and can be neglected. If, in addition, we consider
only the largest particles in a distribution, Dmax†, then the number of particles of this
size cannot change owing to the breakage of larger particles. The population balance

† Our notation Dmax is not to be confused with the maximum stable, or critical, droplet diameter,
defined by Kolmogorov (1949) and Hinze (1955) as Dcrit ∝ (σρ−1

c )3/5ε−2/5.
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Figure 7. Thresholded images of the breakup of 5 cSt silicone oil injected at X/Dj = 25. This
is the same image sequence as shown in figure 6: (a) camera position 1, (b) camera position 2,
(c) camera position 3, (d) camera position 4.

Figure 8. Measured volume flow rate versus downstream distance for each fluid tested. �,
heptane; �, 10 cSt silicone oil; �, 50 cSt silicon oil; �, olive oil. The horizontal bands indicate
±15% of the dispersed fluid flow meter reading.
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equation then simplifies to the following:

∂n(Dmax)

∂t
+ ∇x · [v̄ n(Dmax)] = −g(Dmax)n(Dmax), (3.2)

where g(Dmax) is the breakup frequency of the largest diameter particles. For the
quasi-one-dimensional steady-state problem under investigation here, this means that
the breakup frequency can be determined by examining the flux of particles in the
‘largest size class’ of each distribution. Since the dimensions of each interrogation
window are identical, the number density, n(Dmax) = N (Dmax)/(Aw Lw), where Aw is
the cross-sectional area of each interrogation window, can be replaced with N (Dmax),
the number of particles in the largest size class. The breakup frequency can therefore
be determined from the measured size distributions from the simple expression

g(Dmax) = − 1

N (Dmax)

d

dx
[N (Dmax) U ], (3.3)

where, as noted in § 2, U , the local mean velocity of the particles, is taken to be the
local mean centreline velocity of the water jet.

Clearly, the determination of particle breakup frequency depends on the definition
of the largest size class, Dmax, that is used. Multiple definitions of Dmax were employed
in order to test the sensitivity to this variable. Plots of N (Dmax) and N (Dmax)U are
shown for each fluid tested in figure 9. Two pairs of curves are shown for each
dispersed fluid, corresponding to two definitions of the largest size class. For the first
pair of curves, the largest size class included particles with diameters greater-than-
or-equal-to Dv80 for the size distribution measured at the first interrogation window.
For the second pair of curves, the largest size class included particles with diameters
greater-than-or-equal-to Dv90 at the first interrogation window. Note that Dv80 is
defined as the diameter such that 80% of the total volume recorded corresponds to
particles with smaller diameters and Dv90 is defined such that 90% of the total volume
recorded corresponds to particles with smaller diameters. In both cases, the largest
size class is fixed by the particle size distribution measured at the first interrogation
window and its definition does not change with downstream distance.

Figure 9 indicates that the decay in the number of particles in the largest size class
is similar regardless of whether the minimum of the size class is taken as Dv80 or Dv90.
The particle breakup frequency was determined by fitting curves to the data shown in
these figures and then calculating g(Dmax) according to equation (3.3). These results are
shown in figure 10. Notice that the difference between the two curves shown for each
dispersed fluid increases with increasing dispersed phase viscosity and/or decreasing
interfacial tension between the phases. Since particles with higher viscosity and lower
interfacial tension are elongated more significantly prior to breakup, they assume
increasingly non-spherical shapes. Furthermore, discrepancies in particle sizing owing
to elongation perpendicular to the imaging plane of the camera are likely to be more
pronounced for the largest particles in each distribution. The observed differences in
the calculated magnitude of the breakup frequency may therefore be the result of
inaccuracies in the sizing technique. It is important to note, however, that although
the magnitude of the breakup frequency may change significantly with the definition
of the largest size class, the dependence of the breakup frequency on X/Dj remains
virtually identical in all cases, g(Dmax) ∼ X/D−2.1

j .

3.1. Effect of dispersed fluid properties

The breakup frequency versus downstream distance obtained for each fluid tested
using similar values of Dmax are shown in figure 11. In each case, g(Dmax) ∼ X/D−2.1

j .
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Figure 9. Evolution of N (Dmax) and N (Dmax)Uwith downstream distance for (a) heptane,
(b) 10 cSt silicone oil, (c) 50 cSt silicone oil and (d) olive oil. �, N (Dmax � Dv80)U ;
�, N(Dmax � Dv90)U ; �, N(Dmax � Dv80) �, N (Dmax � Dv90).

Note that breakup frequency decreases with increasing viscosity. A time scale can
be constructed from the dispersed fluid viscosity, particle size and interfacial tension
according to the following:

td = f (µd, σ, Dmax) =
µdDmax

σ
. (3.4)

The breakup times, or inverse of the breakup frequencies, corresponding to the values
shown in figure 11 at X/Dj = 35 are plotted versus this time scale in figure 12. Notice
that the calculated breakup frequencies have a linear dependence on td .

4. Turbulent scaling
Each of the models for turbulent particle breakup presented in Lasheras et al.

(2002) follows the classical Kolmogorov–Hinze theory and therefore assumes that
particle breakup occurs as the result of a single interaction with a velocity fluctuation
over a length that is comparable to the particle diameter. The turbulent stress resulting
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Figure 10. Calculated breakup frequency, g(Dmax), versus downstream distance for (a)
heptane, (b) 10 cSt silicone oil, (c) 50 cSt silicone oil and (d) olive oil. �, g(Dv80); �, g(Dv90).

from this fluctuation is given by the dynamic pressure:

τt (D) = 1
2
ρc∆u2(D), (4.1)

where ρc is the continuous phase density and ∆u2(D) is the mean-squared turbulent
velocity fluctuation over a length D. When this stress exceeds the confinement stress
due to the interfacial tension, σ , between the particle and the continuous phase, given
by

τc(D) =
πσD2

1
6
πD3

= 6
σ

D
, (4.2)

the particle breaks.
According to Kolmogorov’s first similarity hypothesis, given in Kolmogorov (1941b),

for every turbulent flow with sufficiently high Reynolds number, the statistics of the
smallest-scale motions have a universal form that is determined solely by the fluid
kinematic viscosity, ν and the dissipation rate of turbulent kinetic energy, ε. This
smallest scale is known as the Kolmogorov scale and is defined as η = (ν3ε−1)1/4.
Furthermore, Kolmogorov’s second hypothesis states that for every turbulent flow at
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Figure 11. Calculated breakup frequency, g(Dmax), versus downstream distance for each fluid
tested. Similar values of Dmax were chosen by adjusting the lower limit of the largest size class
between Dv80 and Dv90 at the first interrogation window for each fluid. �, heptane, Dmax =
1.9 mm; �, 10 cSt silicone oil, Dmax = 1.92 mm, �, 50 cSt silicone oil, Dmax = 1.81 mm; �, olive
oil, Dmax = 1.91 mm.

Figure 12. The calculated breakup times, or inverse of the breakup frequencies, at
X/Dj = 35, plotted versus the time scale td =µdDmax/σ .

sufficiently high Reynolds number, the statistics of fluctuations of scale l in the range
η � l � L, where L is the integral scale of turbulent fluctuations, have a universal
form that is uniquely determined by ε and independent of ν. A turnover frequency
for turbulent motions within this range of scales, known as the inertial subrange, can
be determined as follows:

finertial =
( ε

l2

)1/3

. (4.3)
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Dmax (mm) Injection location, X/Dj L11/Dmax

Heptane 1.92 25 3.2–4.3
10 cSt silicone oil 1.92 25 3.3–4.2
50 cSt silicone oil 1.87 25 3.6–4.4
Olive oil 1.91 25 3.7–4.4
Heptane 1.81 40 5.2–6.4

Table 2. Comparison between fluid particle diameters and the local integral scale.

Therefore, if turbulent particle breakup follows the Kolmogorov–Hinze theory, the
breakup frequency of fluid particles with diameters in inertial subrange of the
turbulent motions in the continuous phase should scale as g(Dmax) ∼ ε1/3. This

scaling is evident in the model proposed in Martínez-Bazán, Montañes & Lasheras
(1999a, b) and in each of the other models presented in Lasheras et al. (2002).
In the fully developed region at the centreline of a turbulent jet, ε ∼ (X/Dj )

−4,
as indicated previously. Thus, if the Kolmogorov–Hinze theory applies to the
breakup observed in the current experiments, the breakup frequency should scale
as g ∼ (X/Dj )

−4/3. Figure 10 indicates that the experimentally observed breakup
frequency scales as g ∼ (X/Dj )

−2.1. This suggests that the breakup mechanism assumed
by the Kolmogorov–Hinze theory does not apply and that an alternative must be
developed.

The lateral and longitudinal integral scales, L11 and L22, of velocity fluctuations
in a turbulent jet scale with r1/2, the radius for which the magnitude of the mean
velocity is half of its value on the centreline at the same axial location, as discussed
in Corrsin & Uberoi (1950), Wygnanski & Fiedler (1969), Friehe et al. (1971) and
Antonia et al. (1980). For the jet facility used in these experiments, r1/2 ≈ 0.1x, as
shown in figure 3. The magnitude of velocity fluctuations associated with turbulent
features comparable to the integral scale is given by the r.m.s. velocity, u′. The axial
r.m.s. velocity fluctuations at the jet centreline were measured in the current facility
and were given by u′ ≈ 0.25Uc, where Uc is the centreline velocity. Using the relation
for Uc given previously, the strain rate imposed by these large-scale fluctuations scales
as

s ∼ u′

L
∼ O

[
1

(X/Dj − X0/Dj )2

]
, (4.4)

where X0/Dj is the virtual origin. Large-scale strain rates have been estimated at
each downstream location using L11 = 0.7r1/2 following Corrsin & Uberoi (1950), and
u′ = 0.25Uc. The breakup frequencies plotted in figure 11 have been normalized by
the local value of the strain rate and are shown versus dimensionless downstream
distance, X/Dj in figure 13. This figure clearly demonstrates that for the values of
the dissipation rate of turbulent kinetic energy employed, particle breakup for each of
the dispersed fluid tested scales with the passage frequency of the large-scale features
of the background flow, in contrast with the Kolmogorov–Hinze theory.

Table 2 shows the range of the ratio of the local longitudinal integral scale, L11,
to the particle size, Dmax for each data set shown in figures 11–13. Note that for the
dispersed fluids injected at X/Dj =25, the resulting fluid particles are 3.2–4.4 times
smaller than the integral scale. An additional experiment was performed by injecting
heptane on the jet centreline at X/Dj = 40 with a jet Reynolds number of 52 000. This
experiment is shown in the last row of the table. The breakup frequencies calculated
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Figure 13. Calculated breakup frequencies normalized by u′/L11 versus downstream
distance. �, heptane; �, 10 cSt silicone oil; +, 20 cSt silicone oil; �, olive oil.

Figure 14. Calculated breakup frequency for heptane injected at X/Dj =40. The lower limit
of the largest size class was taken to be Dv90 at the first interrogation window. Dmax = 1.81mm.

for this experiment are shown in figure 14. Note that even though these particles
are an order of magnitude smaller than the local longitudinal integral scale, their
calculated breakup frequency scales as g(Dmax) ∼ X/D−2.1

j .
Sevik & Park (1973) proposed an alternative mechanism to describe the breakup

of air bubbles injected into a turbulent jet; they suggested that particle breakup
resulted from a resonant interaction between the natural shape oscillations of the
fluid particle and the passage frequency of turbulent structures of similar size. The
natural frequency of the nth-order shape oscillation of a spherical particle of diameter
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Dmax (mm) Resonance time, 1/f2 (s) Damping time, ζ (s)

Heptane 1.92 1.11 × 10−2 6.30 × 10−2

10 cSt silicone oil 1.92 1.41 × 10−2 1.77 × 10−2

50 cSt silicone oil 1.87 1.34 × 10−2 3.33 × 10−3

Olive oil 1.91 1.82 × 10−2 2.24 × 10−3

Table 3. Resonance and damping times.

D is given by Lamb (1932) as

fn =

√
2n(n + 1)(n − 1)(n + 2)σ

π2[(n + 1)ρd + nρc]D3
. (4.5)

The most important mode of oscillation is the fundamental mode, corresponding to
n= 2. The viscosity of the dispersed and continuous phases act to damp the shape
oscillations. Lamb determined the damping time for the second mode of oscillation
to be given by

ζc =
D2

80νc

(4.6)

when the continuous phase viscosity predominates (e.g. air bubbles in water), and by

ζd =
D2

20νd

(4.7)

when the dispersed phase viscosity predominates (e.g. tar droplets in air).
Risso & Fabre (1998) employed the linear oscillator model of Lamb to describe

the breakup of air bubbles in a turbulent field. In dimensionless form, the governing
equation for this system is given by

d2r∗

dt∗2
+ 2ξ

dr∗

dt∗ + r∗ = K ′We(t∗), (4.8)

where r∗ is the dimensionless particle radius, r/D, D is the undeformed bubble
diameter, t∗ is the dimensionless time, 2πf2t , ξ = 1/2πf2ζ is the dimensionless damping
coefficient, K ′ is a dimensionless constant, and We is the Weber number, defined as

We =
ρcu

2
x(t)∆(D)

σ
, (4.9)

where ∆(D) is related to the structure function δu2(D). By using a time
history for turbulent velocity fluctuations obtained from laser-Doppler anemometer
measurements in their facility, Risso & Fabre were able to show that in moderately
strong turbulence, the interaction of an air bubble with a succession of eddies may
lead to the resonant breakup of the bubble.

The resonance times (1/f2) and appropriate damping times ζ for each fluid tested
in the current investigation, using the particle diameters corresponding to the data
shown in figure 11, are given in Table 3. Note that in all cases, the second-mode
resonance time is of the same order as the damping time. Therefore, unlike the air
bubbles studied by Risso & Fabre, the shape oscillations for all of these particles will
be significantly damped. For 50 cSt silicone oil and olive oil, the damping time is
shorter than the resonance time. For these fluids, the unforced shape oscillations of the
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Figure 15. High-speed image sequence of the breakup of heptane injected on the centreline
of a turbulent water jet. The images are 1/1000 s apart and are located at approximately
X/Dj = 34.

dispersed particles will be damped appreciably within one oscillation. The total period
over which the size distribution of particles in these experiments was recorded was
less than T = 1.4 × 10−2 s. This is similar to the resonance times calculated for each
fluid. Therefore, even in the absence of damping, resonance cannot be the observed
mechanism of particle breakup. Resonant breakup becomes even less plausible if
viscous damping effects are included.

5. Deformation and fragmentation
High-speed visualizations of fluid particle deformation and breakup were obtained

using a Kodak Ektapro TR1000 high-speed motion analyser and a synchronized
strobe light. Typical image sequences are shown for heptane, 10 cSt and 50 cSt silicone
oils in figures 15–17. Successive images in each sequence are 1/1000 of a second apart.
For these sequences, the dispersed phase was injected at X/Dj = 30 and Rej = 52 000.
This yields a mean velocity and dissipation rate of turbulent kinetic energy at the
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Figure 16. High-speed image sequence of the breakup of 10 cSt silicone oil injected on
the centreline of a turbulent water jet. The images are 1/1000 s apart and are located at
approximately X/Dj = 35. It is difficult to identify the daughter particles after breakup in the
final image of the sequence.

dispersed fluid injection point that are nearly identical to those obtained at X/Dj =25
with Rej = 39 000.

The image sequences shown were captured between X/Dj = 34 and X/Dj = 38,
after the initial breakup from the continuously injected column of the dispersed fluid.
Notice that in each case, the fluid particles are stretched significantly prior to breakup
and that in some cases, particularly the 50 cSt images, they seem to be rotating with
the underlying turbulent eddies. breakup, when it eventually occurs, appears to be
caused by a capillary-driven mechanism. Fluid tends to accumulate at the ends and
sometimes in ‘knots’ along the length of the elongating particles. breakup occurs at
locations where the radius of curvature changes between the thinning region and
the bulbous ends or knots. This is analogous to the observations in laminar flows
made by Taylor (1934), Bentley & Leal (1986b), Stone et al. (1986), Stone & Leal
(1989a), Tjahjadi & Ottino (1991), and others. Estimates of the capillary numbers
that apply to the particles shown in the high-speed images (X/Dj = 35, Rej = 52 000)
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Figure 17. High-speed image sequence of the breakup of 50 cSt silicone oil injected on the
centreline a turbulent water jet. The images are 1/1000 s apart and are located at approximately
X/Dj = 35. The deformation and breakup of two particles are shown, labelled as ‘A’ and ‘B’.

Re = u′D/νc λ= µd/µc Ca =
µc(u

′/L11)D

σ

Heptane 1000 0.5 4.3 × 10−4

10 cSt silicone oil 1000 9.7 5.9 × 10−4

50 cSt silicone oil 1000 51 5.6 × 10−4

Olive oil 1000 72 1.0 × 10−3

Table 4. Representative capillary numbers.

are given in table 4. A comparison of these values with the results shown in Janssen
& Meijer (1993) indicates that the capillary numbers in the present experiments are
approximately three orders of magnitude smaller than the critical values that apply
for zero Reynolds number. Notice, however, that the Reynolds number based on
particle diameter that applies in the present experiments is approximately 1000. Both
Renardy & Cristini (2001a, b) and Sheth & Pozrikidis (1995) have found that fluid
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Rej =
U0Dj

νc

We t =
2ρc(εD)2/3D

σ
Oh=

µd√
ρdσD

ρd

ρc

Heptane 39 000 10 0.002 0.68
10 cSt silicone oil 39 000 20 0.039 0.94
50 cSt silicone oil 39 000 20 0.20 0.97
Olive oil 39 000 30 0.39 0.88

—Previous study—
Air 25 500 100 0.001 0.001

Table 5. Typical values of the relevant dimensionless parameters for the current experiments

and those in Martı́nez-Bazán (1998) and Martínez-Bazán et al. (1999a, b).

particles will break at subcritical capillary numbers when the Reynolds number is
non-zero. Renardy & Cristini showed that the critical capillary number depends
on the Reynolds number as Cacrit = 1/Rec. Therefore, it is not surprising that for a
Reynolds number of 1000, the Cacrit is three orders of magnitude smaller than the
value at Re = 0.

The more viscous fluid particles are capable of sustaining greater deformations
prior to breakage and can stretch to lengths that are comparable to the large-scale
features of the flow. For the 50 cSt sequence, dimensions have been indicated in the
first five images. The value of r1/2 at the axial location in the turbulent jet where
this particle is breaking is approximately 1 cm. Notice that this fluid particle, initially
about 1.5 mm in diameter, stretches to a length comparable to r1/2 before breakage
occurs. The particle seems to be rotating about a length of approximately 3–4 mm,
similar in dimension to the local integral scale. Notice that in images 6–9 of the
sequence (figure 17), a second particle undergoes a similar elongation and breakup.

Finally, note that resonant shape oscillations are not evident in the breakage
sequences. This mode of breakup does not occur, or at least is not prevalent, under
these experimental conditions.

6. Discussion
The results presented in this work are in contrast with those obtained previously in

the same facility and discussed in Martínez-Bazán et al. (1999a, b) and Lasheras et al.
(2002). In the previous investigations, the breakup of air bubbles in a turbulent water
jet was found to agree with the scaling given by the Kolmogorov–Hinze theory and a
model for particle breakup was developed based on a balance between the stress due
to turbulent velocity fluctuations over a length comparable to the particle diameter
and the confinement stress resulting from the interfacial tension of the particle surface.

A high-speed video sequence of air bubbles breaking at the centreline of a turbulent
water jet, taken from Martı́nez-Bazán (1998), is shown in figure 18. Notice that the
bubbles in this sequence assume the ‘bulgy’-type deformation described in Hinze
(1955). Deformation and fragmentation take place on a scale that is comparable
to the original bubble diameter in these images, whereas in the footage shown in
the previous section, fluid particles stretch to several times their original diameter
before breaking. Clearly, the turbulent breakup mechanism observed in the prior
investigation is different from that observed in the current study.

Table 5 compares typical values of the relevant dimensionless parameters in
the current investigation to those in the previous study. As mentioned above, the
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Figure 18. High-speed image sequence of the breakup of an air bubble injected on the
centreline of a turbulent water jet. The images are 1/6000 s apart and proceed from left to right.
The dissipation rate of turbulent kinetic energy at the injection point, ε0, was 1000WKg−1.
[From Martı́nez-Bazán (1998)].

Kolmogorov–Hinze theory fits the results of the previous investigation and the
predictions of the Martı́nez-Bazán model match the earlier experimental results.
Conversely, the present investigation indicates that for each of the fluids tested, it
is more appropriate to scale particle breakup with the large-scale features of the

background flow. In the experiments presented in Martínez-Bazán et al. (1999a, b),
the dispersed phase was injected further upstream in the turbulent jet in a region
with a much greater dissipation rate of turbulent kinetic energy. Note that in the
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current investigation, the particle Weber numbers are an order-of-magnitude smaller
than those in the previous experiments. Therefore, the excess of energy contained
in turbulent scales with dimensions similar to the particle diameter compared to the
confining energy due to the interfacial tension of the particles is much smaller in
the current investigation than in the previous study. For the less energetic turbulent
conditions used here, there may not be enough energy available at lengths comparable
to the particle diameter to break the particle in a single interaction, as required
by the theory. Interactions with turbulent eddies in the inertial subrange of the
background flow may deform the fluid particles but not break them. A succession of
interactions might cause the dispersed particles to be deformed sufficiently that they
are comparable in length to the large-scale features of the flow. breakup then occurs
due to capillary instabilities caused by the strain imposed by the large scales.

7. Conclusions
Existing models for the breakup of fluid particles in a turbulent flow are based

on the premise that the structures responsible for breakup are comparable in size to
the diameter of the dispersed particles and that breakup is due to the mechanism
first proposed by Kolmogorov (1949) and Hinze (1955). A previous comparison
between our experimental results for the breakup of air bubbles at the centreline of
a turbulent water jet and the predictions of various models for turbulent particle
breakup, discussed in Lasheras et al. (2002), confirms that this assumption is valid
in high-intensity locally isotropic turbulence. For these conditions, we found that
the phenomenological model proposed by Martnez-Bazán et al. (1999a, b) accurately
predicts the experimental results obtained in our facility. The results of the present
study indicate that this model underestimates the experimentally observed particle
breakup frequency in the same facility for fluid particles with non-negligible density
and viscosity at low Weber numbers. High-speed video images of the breakup of these
fluids reveal that the dispersed particles stretch dramatically prior to fragmentation,
even within locally isotropic regions of the flow. The amount of stretching observed
increases with increasing droplet viscosity. For the most viscous fluids tested, dispersed
fluid particles with initial diameters within the inertial subrange or the background
turbulent flow stretch to lengths comparable to the local integral scale prior to
fragmentation. breakup times at these low Weber numbers scale with the capillary
time td = µdD/σ . Furthermore, the calculated breakup frequency (inverse of the
breakup time) scales with the large-scale features of the turbulent flow, namely
the large-eddy turnover frequency, given by u′/L. These results are analogous to
those seen by several investigators in low-Reynolds-number flows; however, they are
in disagreement with the classical Kolmogorov–Hinze theory for turbulent particle
breakup.

The authors gratefully acknowledge Carlos Martínez-Bazán, J. L. Montañes and
Alain Cartellier for their assistance with this work. They also thank the reviewers
selected by the editor for their insightful comments and suggestions.
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models for the breakup of an immiscible fluid immersed into a fully-developed turbulent flow.
Intl J. Multiphase Flow 28, 247–278.

List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189–212.

Luo, H. & Svendsen, F. 1996 Theoretical model for drop and bubble breakup in turbulent
dispersions. AIChE J. 42, 1225–1233.



Breakup of immiscible fluids in turbulent flows 333

Martı́nez-Bazán, C. 1998 Splitting and dispersion of bubbles by turbulence. PhD thesis, University
of California, San Diego.
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